Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mathias S. Wickleder

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany

Correspondence e-mail: mathias.wickleder@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Se–O) = 0.004 Å R factor = 0.023 wR factor = 0.053 Data-to-parameter ratio = 19.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Holmium chloride oxoselenate(IV), HoClSeO₃

In the title compound, HoClSeO₃, the Ho³⁺ ion is coordinated by three monodentate SeO_3^{2-} ions, one chelating selenite group, and two chloride ligands. The [HoO₅Cl₂] polyhedra are pentagonal bipyramids which are connected to form a threedimensional network *via* edges and vertices. The SeO₃²⁻ ion shows the typical pyramidal shape due to the lone electron pair of the selenium atom.

Received 4 February 2003 Accepted 10 February 2003 Online 21 February 2003

Comment

HoClSeO₃ is isotypic with the recently described ErClSeO₃ (Wickleder, 2002) and also with the chloride tellurite HoClTeO₃ (Meier & Schleid, 2002). Isotypism of rare earth selenites and tellurites is very rare, due to the tendency of Te⁴⁺ to attain higher coordination numbers. In the crystal structure of HoClSeO₃, the Ho³⁺ ion is coordinated by five O atoms, with Ho-O distances ranging from 2.201 (5) to 2.373 (4) Å, and two chloride ligands at 2.7033 (17) and 2.7264 (18) Å. The [HoO₅Cl₂] polyhedron is best regarded as a pentagonal bipyramid, with an O atom and a chloride ion at the apices. The linkage of the polyhedra occurs in the [010] direction via opposite O1-O1 edges, leading to infinite chains (Fig. 1), which are further connected via chloride ions into a threedimensional network. The O atoms within the [HoO₅Cl₂] polyhedra belong to three monodentate and one chelating SeO_3^{2-} ions. The monodentate ions are chelating and the chelating ones are monodentate to the adjacent polyhedra. The chloride ion is twofold coordinated and the SeO_3^{2-} group is connected to four Ho^{3+} ions. When viewed along [010], the effect of the stereochemically active lone electron pairs at the Se atoms is obvious (Fig. 2).

Figure 1

Linkage of the $[HoO_5Cl_2]$ polyhedra into chains in the crystal structure of HoClSeO₃. Note that one selenite group acts as a chelating ligand. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry code: (vi) x, $-y + \frac{1}{2}$, z]

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Projection of the crystal structure of HoClSeO₃ on (010).

Experimental

A mixture of Ho₂O₃, HoCl₃, and SeO₂ (molar ratio 1:1:3) was heated in an evacuated silica ampoule to 573 K with the help of a resistance furnace. After 24 h the temperature was raised to 1023 K, followed by slow cooling (5 K h⁻¹) to 303 K. The light yellow, slightly moisturesensitive crystals were handled in an argon-filled glove box and an appropriate specimen was mounted in a glass capillary for the X-ray investigation.

Crystal data

ClHoO ₃ Se $M_r = 327.34$ Orthorhombic, <i>Pnma</i> a = 7.2093 (15) Å b = 6.9259 (10) Å c = 8.7689 (15) Å V = 437.84 (13) Å ³ Z = 4 $D_x = 4.966$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 2000 reflections $\theta = 3.0-28.0^{\circ}$ $\mu = 26.85 \text{ mm}^{-1}$ T = 293 (2) K Column, yellow $0.15 \times 0.13 \times 0.12 \text{ mm}$	
Data collection		
Stoe IPDS-I diffractometer φ scans Absorption correction: numerical	626 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$ $\theta_{max} = 30.0^{\circ}$	

 $h = -10 \rightarrow 10$

 $k=-9\to9$

 $l = -12 \rightarrow 12$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	where $P = (F_o^2 + 2F_c^2)/3$
$vR(F^2) = 0.053$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.04	$\Delta \rho_{\rm max} = 1.21 \text{ e } \text{\AA}^{-3}$
88 reflections	$\Delta \rho_{\rm min} = -1.79 \text{ e} \text{ Å}^{-3}$
5 parameters	Extinction correction: SHELXL
	Extinction coefficient: 0.0412 (15)

Table 1

Selected geometric parameters (Å, °).

Ho-O2 ⁱ	2.201 (5)	Ho-Cl ⁱ	2.7033 (17)
Ho-O1 ⁱⁱ	2.266 (3)	Ho-Cl	2.7264 (18)
Ho-O1 ⁱⁱⁱ	2.266 (3)	Se-O2	1.664 (5)
Ho-O1 ^{iv}	2.373 (4)	Se-O1 ^{vi}	1.718 (3)
Ho-O1 ^v	2.373 (4)	Se-O1	1.718 (3)
O2-Se-O1 ^{vi}	102.11 (19)	O1 ^{vi} -Se-O1	91.1 (2)
O2-Se-O1	102.11 (18)		
Symmetry codes: (i)	$r = \frac{1}{2} v_{1}^{-1} = \pi$; (ii) 1	-r - v - 1 - z (iii) 1 - 1	$x^{1} \pm y^{1} = \pi$ (iv)

Symmetry codes: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (ii) 1 - x, -y, 1 - z; (iii) $1 - x, \frac{1}{2} + y, 1 - z$; (iv) x - 1, y, z - 1; (v) $x - 1, \frac{1}{2} - y, z - 1$; (vi) $x, \frac{1}{2} - y, z$.

The maximum and minimum residual electron-density peaks are 1.14 and 0.85 Å from the Ho atom.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

References

Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.

Meier, S. F. & Schleid, Th. (2002). Z. Anorg. Allg. Chem. 628, 526-527.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe & Cie (1999). X-SHAPE. Version 1.06. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2001). X-AREA (Main Menu Version 1.15) and X-RED (Version 1.22). Stoe & Cie GmbH, Darmstadt, Germany.

Wickleder, M. S. (2002). Z. Naturforsch. Teil B, 57, 1414-1418.

(X-SHAPE; Stoe & Cie, 1999)

 $T_{\min} = 0.023, \ T_{\max} = 0.039$

4891 measured reflections

688 independent reflections